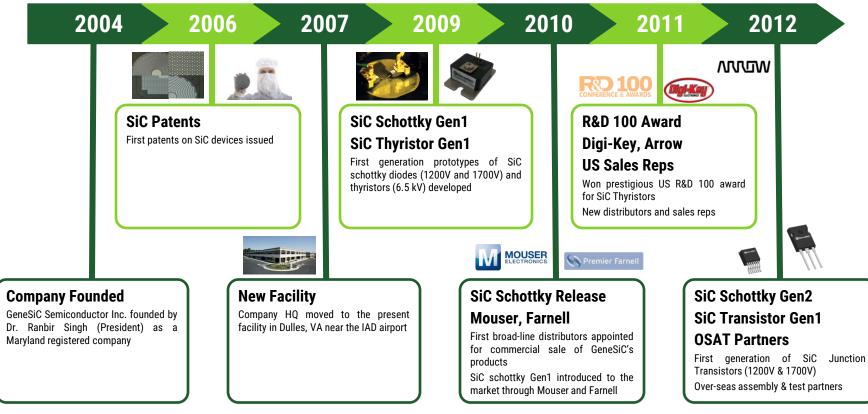


Energy Efficiency Through Innovation

Company Introduction

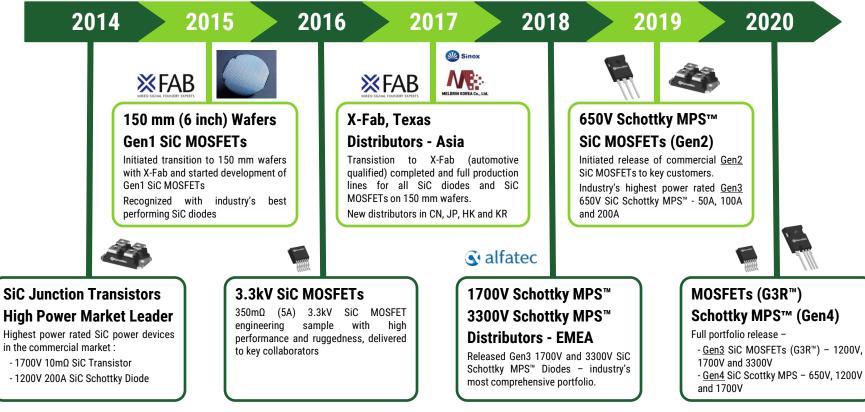
October 2020

Introduction

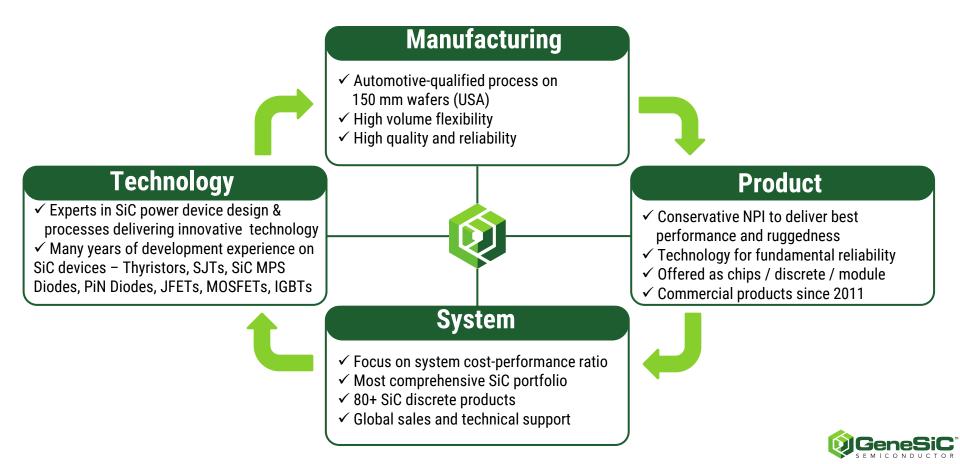


GeneSiC is dedicated to providing SiC power devices that offer -

- ✓ Best-in-class performance and reliability with innovative technology
- ✓ Highest quality
- Competitive pricing and high-volume turnaround with low lead times
- ✓ Comprehensive portfolio applicable to wide range of applications (100+ SiC products)
- ✓ Strong product and customer support



History (2004 – 2012)



|History (2012 – Present)|

Why GeneSiC ?

Sales and Distribution

- ✓ Global Sales and Technical Support
 - 6 Broad-line Worldwide Distributors
 - Arrow Electronics
 - Digi-Key Electronics
 - Mouser Electronics
 - Newark / Farnell / Element14
 - Local FAE and FSE Support in 20+ Countries
 - Strong Sales-Rep Network in North America
 - Easy Sample Availability and Industry's Lowest Lead Times
 - Most Comprehensive SiC Portfolio 100+ SiC Products

Iberica semiconductores de potencia s.L.

🔺 ΝΛΟ

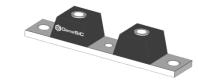
SemiSolution Supply

Commercial Products

Silicon Carbide

(100 + Products)

- ➢ SIC MOSFET
- ➢ SiC Schottky MPS™
- SiC Module
- SiC PiN Diode
- SiC Junction Transistor
- SiC Custom Services

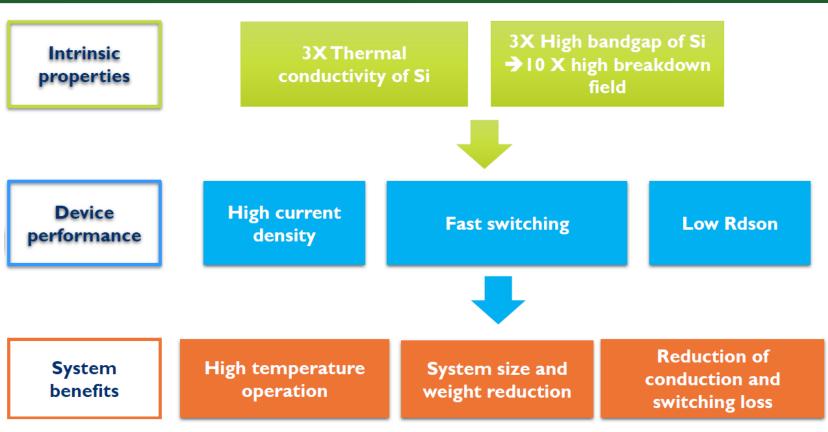

Silicon

(1500 + Products)

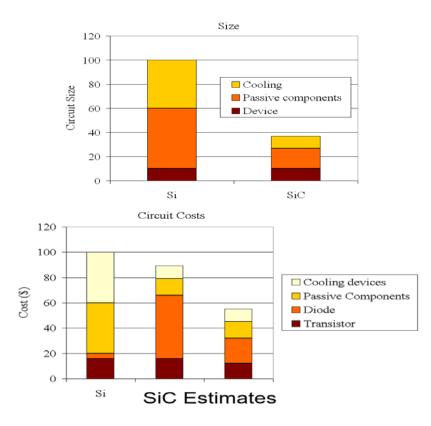
- Rectifier Module
- Stud Rectifier
- Bridge Rectifier

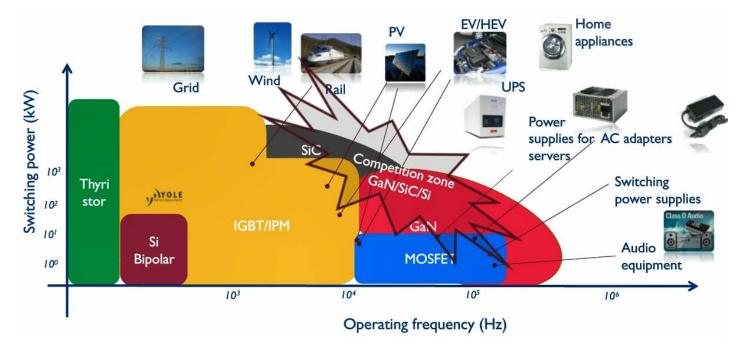
Product Support

- Industry's most detailed and accurate datasheets
- Detailed and accurate SPICE models (Level-I and Level-III) for ALL its products; PLECS models coming soon
- Customer designs can be simulated by GeneSiC engineers on LTSPICE upon request
- High quality, cost effective gate driver boards and evaluation boards for benchmarking SiC devices. Gerber files, BOMs and design notes available
- SiC custom services based on customer's needs (Example device voltage, current ratings, package types, lead finishes etc.)
- ✓ Competitor cross-references on website
- ✓ Application Notes and Technical Articles

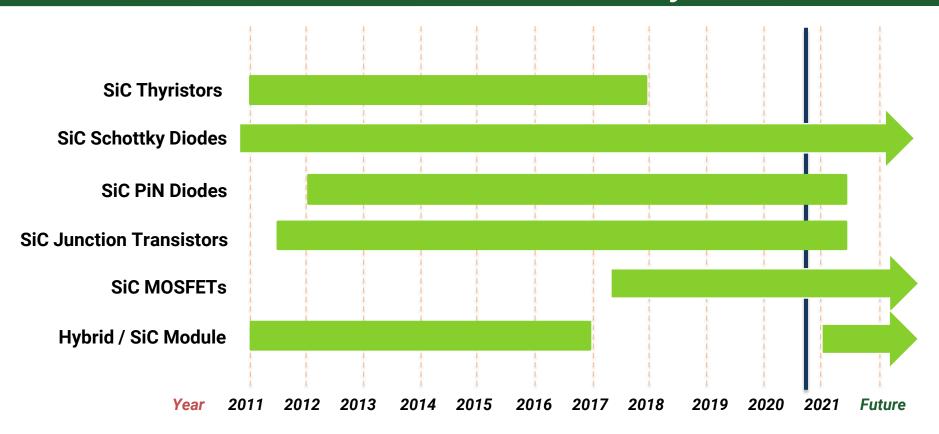

Awards and Recognitions

- ✓ 2011 \rightarrow R&D100 Award : Ultra-high Voltage SiC Thyristor (6.5kV)
- ✓ 2016 \rightarrow GeneSiC named among Top-30 Power Semiconductor Companies by EETimes
- ✓ 2016 → EETimes recognized GeneSiC's Founder as "Forty of the Top Innovators Changing the Face of Electronics"
- ✓ 2019 \rightarrow R&D100 Award : SiC-based Monolithic Transistor-Rectifier Semiconductor Switch

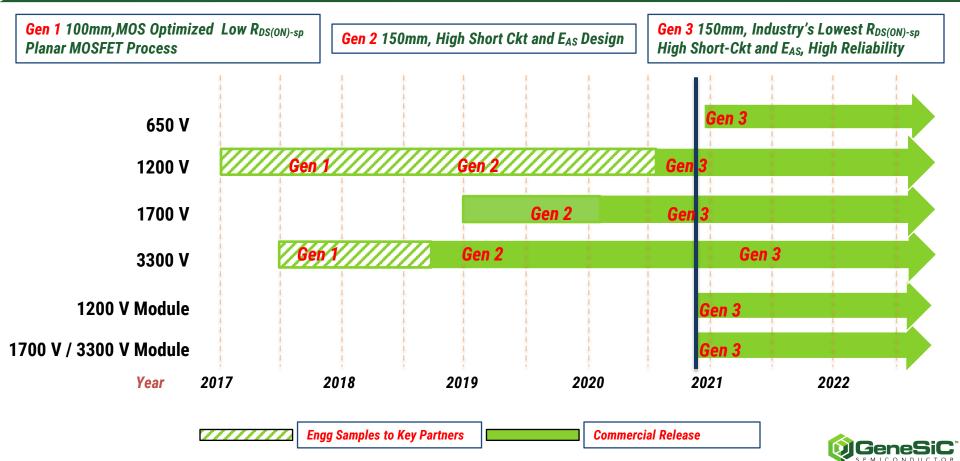

Why SiC ?


SiC is Critical for High Power Density

- ✓ SiC devices allow higher frequency of power conversion (>10kHz v/s <1kHz)
- ✓ High power conversion efficiency (3-6x lower power losses)
- ✓ SiC based circuits estimated to be 1/3rd in size / weight of Si circuits
- The cost of a SiC circuit estimated to be
 50% less of a comparable circuit of Si even with higher priced devices
- ✓ Simplification of power conversion circuits (2 level instead of 5 level voltage stages)
- ✓ Efficient high temperature operation


Applications for SiC Devices

SiC is promising for applications that require <u>>10 kHZ switching frequency</u> and/or <u>>350/400 V bus voltage rating</u>

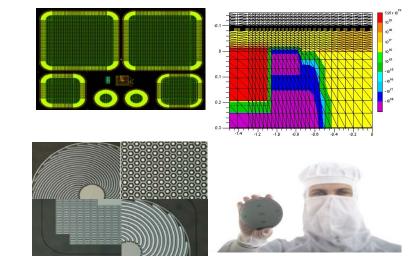


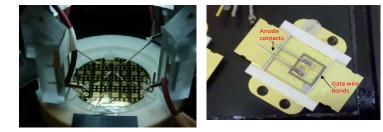
GeneSiC's SiC Power Device History

SiC MOSFET Technology Roadmap

Expertise Areas

SiC Device Design & Concepts


✓ Experts in SiC designs and concepts
✓ 2D device simulations and layout


Device Fabrication

- \checkmark Novel fabrication techniques for SiC
- ✓ State-of-the-art foundry for automotive qualified processes

Testing & Packaging

- ✓ On-wafer and packaged parts tested inhouse at GeneSiC
- \checkmark Packaging with high volume partners

Foundry Strength

	GeneSiC (X-Fab, USA)	Competitor(s)
Wafer Size	6 inch (150 mm) – Since 2015	4 inch (100 mm)
Epi-Wafer Quality	Best in the market	Captive / less aware of top-quality suppliers
Fabrication Equipment	State-of-the-art fully automated, Class-10 CMOS line; Automotive qualified; 35k Wafers / Month	Previous generation, 4 inch partially automated line; 10k Wafers / Month
Quality Standard	ISO-TS16949, Highest automotive standards for 15 years	Legacy, non-automotive standards
Cost Structure	Scalable, 6 inch wafers offer 2.25x devices than 4 inch wafers	High fixed and running costs
Process Innovation	Fast turn-arounds; leverage large scale silicon innovations	Legacy knowledge-base with lack of cross- fertilization of silicon innovations

Design, Fabrication and Testing (1 of 2)

SiC substrate and Epitaxial Materials (Epiwafers) specifications and tolerances defined by GeneSiC

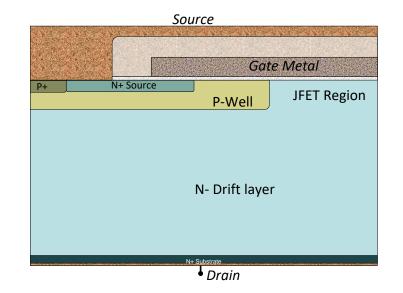
SiC Epiwafers procured from 3 sources. CofC obtained and Inspection conducted at GeneSiC

Fabrication Process Steps Specified by GeneSiC to be implemented at X-Fab, Lubbock TX Full Process flow detail log provided by X-Fab. Well defined FMEA and Control Plan Implemented 100% Testing of SiC Devices conducted at GeneSiC and then sent to Assembly and Test Houses – 2 sources for Assembly and Test used

Design, Fabrication and Testing (2 of 2)

BOM for Packaging specified by GeneSiC, and assembly Process flow approved by GeneSiC Assembly house follows Assembly Instructions, Test Instructions, Packaging Instructions from GeneSiC. CofC provided by Assembly house 100% Packaged device testing conducted by assembly house, and good devices separated from bad and shipped to GeneSiC, or distributors directly

GeneSiC implements a well defined production plan according to state-of-the-art quality plan and instructions



Technology for Fundamental Reliability

25

Standard DMOSFETs for highly uniform production and robust and reliable performance –

- \checkmark Low drain-source resistance, R_{DS(ON)}
- Low gate charge and device capacitances for superior switching figure-of-merit (FOM)
- Robust design for high avalanche ruggedness
- Low conduction loss at high temperatures
- \checkmark Fast and reliable intrinsic diode with low reverse recovery charge
- ✓ Low costs at high volumes

MOSFET Technology Comparison

	Planar	Trench
Pros	Less Complex Manufacturing Process Higher Reliability Better Ruggedness	(Potential) Reduction of On-Resistance Lower Gate Charge (Better Figure-of-Merit)
Cons	-	Poor Reliability of Gate Oxide in Trench Structure Poor Ruggedness (Avalanche and Short Circuit) Poor R _{DS(ON)} v/s Temperature Dependence
Main Players	GeneSiC Semiconductor Wolfspeed / Cree ST Microelectronics ON Semiconductor / Fairchild Mitsubishi Microsemi Littelfuse	ROHM Infineon

650V SiC Schottky MPS™

						5	
	DO-214	T0-252-2	TO-263-7	TO-220-2	TO-247-2	T0-247-3	SOT-227
1 A	GB01SLT06-214						
4 A		GE04MPS06E		GE04MPS06A			
6 A		GE06MPS06E		GE06MPS06A			
8 A		GE08MPS06E		GE08MPS06A			
10 A		GE10MPS06E		GE10MPS06A			
12 A				GE12MPS06A			
16 A						GE2X8MPS06D	
20 A						GE2X10MPS06D	
30 A			GD30MPS06J	GD30MPS06A	GD30MPS06H		
50 A					GC50MPS06-247		
60 A							GD2X30MPS06N
100 A							GC2X50MPS06-227
200 A							GC2X100MPS06-227

1200V SiC Schottky MPS™

		0 [and the	1 anne		(Courses	
	DO-214	TO-252-2	TO-220-2	TO-247-2	TO-247-3	SOT-227	Bare Chip
1 A	GB01SLT12-214	GB01SLT12-252					
2 A	GB02SLT12-214	GB02SLT12-252	GC02MPS12-220				
2 A		GD02MPS12E					
5 A		GC05MPS12-252	GC05MPS12-220				
8 A		GC08MPS12-252	GC08MPS12-220				
10 A		GC10MPS12-252	GC10MPS12-220		GC2X5MPS12-247		
15 A			GC15MPS12-220	GC15MPS12-247	GC2X8MPS12-247		
20 A			GC20MPS12-220	GC20MPS12-247	GC2X10MPS12-247		
30 A					GC2X15MPS12-247		GD30MPS12-CAL
40 A					GC2X20MPS12-247		
50 A				GC50MPS12-247			GD50MPS12-CAL
60 A						GD2X30MPS12N	
100 A						GB2X50MPS12-227	GD100MPS12-CAL
200 A						GB2X100MPS12-227	

_

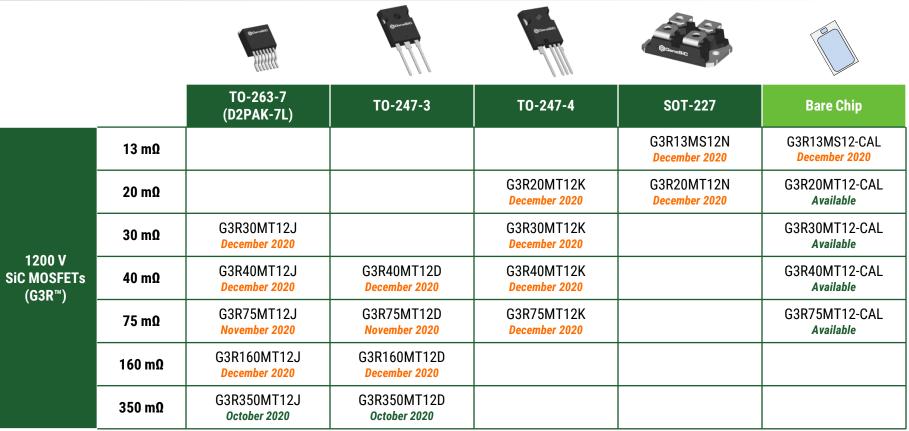
1700V – SiC Schottky MPS™

		TO-263-7 (D2PAK-7L)	TO-247-2	SOT-227	Bare Chip
	5 A	GB05MPS17-263 Production	GB05MPS17-247 Production		
	10 A		GB10MPS17-247 Production		
1700 V	10 A		GD10MPS17H December 2020		
SiC Schottky MPS™	IPS™ 25 A		GB25MPS17-247 Production		
	50 A		GB50MPS17-247 Available		
	75 A				GD75MPS17-CAL Production
	100 A			GB2X50MPS17-227 Production	
	150 A			GD2X75MPS17N November 2020	

3300V – SiC Schottky MPS™

		DO-214 (SMB)	TO-263-7 (D2PAK-7L)	TO-220-FP	Bare Chip
	0.3 A	GAP3SLT33-214 Production		GAP3SLT33-220FP Production	
3300 V SiC Schottky MPS™	5 A		GB05MPS33-263 Production		
	50 A				GC50MPS33-CAL Production

Availability Timeline


650V – SiC MOSFETs

		TO-263-7 (D2PAK-7L)	TO-247-3	TO-247-4	SOT-227	Bare Chip
650 V SiC MOSFETs	15 mΩ		G3R15MT06D February 2021	G3R15MT06K February 2021		G3R15MT06-CAL February 2021
G3R™)	60 mΩ	G3R60MT06J December 2020	G3R60MT06D December 2020	G3R60MT06K December 2020		

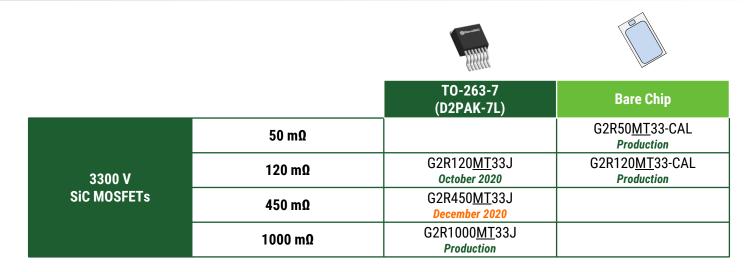
1200V SiC MOSFETs (G3R[™])

GeneSiC SEMICONDUCTOR

Availability Timeline

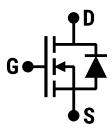
SiC Modules Under Development ...

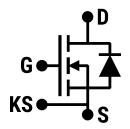
1700V – SiC MOSFETs


G2R[™] = +20 V / -5 V Gate Drive G3R[™] = +15 V / -5 V Gate Drive

		TO-263-7 (D2PAK-7L)	TO-247-3	TO-247-4	SOT-227	Bare Chip
1700 V SiC MOSFETs	13 mΩ				G3R13MS17N December 2020	G3R13MS17-CAL December 2020
	20 mΩ			G3R20MT17K December 2020	G3R20MT17N December 2020	G3R20MT17-CAL November 2020
	45 mΩ		G3R45MT17D November 2020	G3R45MT17K December 2020		G3R45MT17-CAL November 2020
	450 mΩ	G3R450MT17J December 2020	G3R450MT17D December 2020			
	1000 mΩ	G2R1000MT17J Production	G2R1000MT17D Production			

3300V – SiC MOSFETs



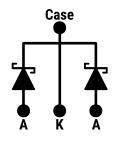


Nomenclature – SiC MOSFET

- **G3** GeneSiC Semiconductor 3rd Generation SiC MOSFET (G3R[™])
- **R/S** R_{DS(ON)} Rating (mΩ) / Special Customizations
- **75** Typical On-State Resistance (R_{DS(ON)}) at 25°C
- MT/MS MT = Planar MOSFET; MS = Integrated-Schottky MOSFET
- 12, 17, 33 Breakdown Voltage Multiplier * 100 (V)
- **D** Industry Standard Package Code
 - **J** TO-263-7 (D2PAK-7L)
 - **D** TO-247-3
 - **K** T0-247-4
 - **N** SOT-227
 - CAL Bare Chip

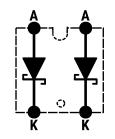
Nomenclature – SiC Schottky MPS™

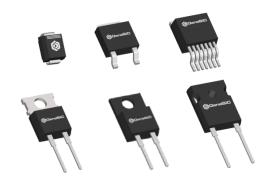
- **G** GeneSiC Semiconductor
- **B**, **C**, **D**, **E** Technology Generation (B/C Gen3; D Gen4; E Gen5)
- **<u>2X</u>** Common Cathode or Dual Diode (or Blank if Standard Diode)
- 10 Forward Current (A) Rating at Rated Forward Voltage (V_F)
- MPS, SLT, SHT Schottky MPS[™] Series (Merged-PiN-Schottky); SLT / SHT Schottky JBS
- 06, 12, 17, 33 Repetitive Peak Reverse Voltage Multiplier * 100 (V)
- 220, A Industry Standard Package Code
 - **214** DO-214
 - **252**, **E** TO-252-2 (DPAK-2L)
 - **263**, **J** TO-263-7 (D2PAK-7L)
 - 220, A TO-220-2 or TO-220-FP
 - **247**, **H** / **D** TO-247-2 (H) or TO-247-3 (D) (Common Cathode)
 - **227**, **N** SOT-227 (Dual Diode Module)


Packages / Configurations

Standard

DO-214 (SMB) TO-252-2 (DPAK) TO-263-7 (D2PAK) TO-220-2 TO-220-FP TO-247-2


Common Cathode


T0-247-3

Dual Diode

SOT-227 (Isolated Base-plate)

43670 Trade Center Pl Ste 155 Dulles, VA 20166 United States of America

contact@genesicsemi.com +1 703-996-8200